& Dulac, 1955) mentioned in I. All other parts of I are correct.

## References

BERTAUT, E. F. (1955). Acta Cryst. 8, 823. BERTAUT, E. F. (1956). Acta Cryst. 9, 769. BERTAUT, E. F. & DULAC, J. (1955). Tables de Linéarisa-

## Acta Cryst. (1957). 10, 607

tion des Produits et Puissances des Facteurs de Structure. \*Grenoble: Laboratoire d'Électrostatique et de Physique du Métal.

MACGILLAVRY, C. H. (1950). Acta Cryst. 3, 214. WASER, J. (1955). Acta Cryst. 8, 595.

\* About 40 copies are available.

Crystallographic data for tin monophosphide. By G. KATZ, J. A. KOHN and J. D. BRODER, U. S. Army Signal Engineering Laboratories, Fort Monmouth, N. J., U.S.A.

(Received 14 May 1957)

According to Hansen (1936, pp. 973-4), the phosphides of tin, SnP<sub>3</sub>, Sn<sub>4</sub>P<sub>3</sub>, and Sn<sub>3</sub>P<sub>4</sub>, may be formed in the binary system Sn-P. An attempt to prepare SnP<sub>3</sub> was made by the high-temperature reaction of a 1:3 mixture of tin and red phosphorus. The constituent elements were heated to  $700^{\circ}$  C. in an evacuated (10<sup>-6</sup> mm. of Hg) vycor tube; afterwards slow-cooled at 40° C.hr.-1 to 380° C. and then allowed to reach room temperature. The reaction product was a solidified mass with a siliconlike dull metallic luster. The presence of unreacted phosphorus indicated a deviation from the stoichiometry SnP<sub>3</sub>. The product was graphitic in character, i.e., quite soft with an easy cleavage parallel to (00.l). The entire product appeared to be one large single crystal. It was found to be insoluble in concentrated  $HNO_3$  at 300° C. For chemical analysis\*, it was fused with  $K_2CO_3$  and sulphur in a platinum crucible and then acidified. The excess sulphur was oxidized and the phosphorus was determined as phosphomolybdate. For the tin determination, the sample was acidified with HCl, reduced with aluminum foil and titrated iodometrically. The results, which are averaged from two analyses, checked closely with the stoichiometry of tin monophosphide, SnP:

|    | Analysis<br>(wt.%) | Calculated<br>(wt.%) |
|----|--------------------|----------------------|
| Sn | 78.86              | 79.30                |
| Р  | 20.47              | 20.70                |

This formulation is not in agreement with Hansen (1936, p. 974), who indicated that a monophosphide of tin appeared unlikely.

Rotation and precession patterns were obtained, using a thin cleaved section of the crystal with unfiltered Mo radiation ( $\lambda = 0.7107$  Å). A hexagonal unit cell was established with the dimensions:

$$a_0 = 8.78 \pm 0.01$$
 Å,  $c_0 = 5.98 \pm 0.01$  Å,  $c/a = 0.682$ .

The unit-cell dimensions were determined from the spacings of high-order reflections:  $a_0$  from the fourteenth order of (h0.0) and  $c_0$  from the twelfth order of (00.l) on zero-level precession photographs. The density of a 77 mg. sample was measured pycnometrically in methanol and found to be 5.01 g.cm.<sup>-3</sup> as compared to a calculated density of 4.98 g.cm.<sup>-3</sup> for Z = 8.

\* Schwarzkopf Microanalytical Laboratory, Woodside 77, New York, N.Y., U.S.A.

| Table 1.    | Principal lines of | the powder | pattern of SnP |
|-------------|--------------------|------------|----------------|
| hk.l        | $d_c$ (Å)          | $d_o$ (Å)  | I              |
| 00.1        | 5.98               | 5.97       | vvw            |
| 20.0        | 3.80               | 3.77       | m 🐔            |
| 20.1        | 3.21               | 3.19       | vs             |
| 00.2        | 2.99               | 2.99       | m-             |
| 21.0        | 2.87               | 2.91       | vvvv           |
| 10.2        | 2.78               | 2.82       | <i>m</i> —     |
| 20.2        | 2.35               | 9.25       |                |
| 30.1        | 2.33 ∫             | 2.00       | 0              |
| 22.0        | 2.20               | 2.18       | 8              |
| 31.0        | 2.11               | 2709       | w              |
| 00.3        | 1.993              | 2.001      | w              |
| 31.1        | 1.989              | 1.973      | vw             |
| 40.0        | 1.901              | 1.890      | w              |
| 40.1        | 1.812              | 1.804      | m+             |
| 22.2        | 1.769              | 1.768      | m              |
| 41.1        | 1.599              | 1.598      | w              |
| 22.3        | 1.476              | 1.477      | m-             |
| <b>42.0</b> | 1.437              | 1.433      | vw             |
| 42.1        | 1.397 )            | 1.394      | m +            |
| 20.4        | 1.391 ∫            | 1 00 1     | 110            |
| 42.2        | 1.295              | 1.296      | w              |
| 60.0        | 1.267              | 1.269      | vvw            |
| 40.4        | 1.175              | 1.177      | w              |
| 42.3        | 1.166              | 1.166      | w              |

In Table 1 the observed d spacings of the powder pattern are compared with those calculated from the lattice constants obtained using single crystal data. The powder pattern was obtained with Ni-filtered Cu radiation ( $\lambda = 1.5418$  Å); relative intensities were estimated visually. Owing to the soft, graphitic nature of SnP, the diffraction lines for  $2\theta > 90^{\circ}$  were broad and diffuse and not usable for a more accurate determination of the unit-cell dimensions. No systematic absences were observed. The reciprocal-lattice-level symmetry for c axis rotation was characterized by  $C_{6l}$  for the zero level and  $C_{3l}$  for the upper levels. The diffraction symmetry is  $D_{3d}-\overline{3m}$  with the following possible space groups:  $D_{3r}^2-P321$ ;  $C_{3r}^1-P3m1$ ;  $D_{3d}^2-P\overline{3m}$ , the last being centrosymmetric. A structure analysis is planned.

The authors are grateful to Mr R. Lefker, of these Laboratories, for the IBM calculation of d spacings.

## Reference

HANSEN, M. (1936). Der Aufbau der Zweistofflegierungen. Berlin: Springer.